જો વિધેય $f\,:\,R - \,\{ 1, - 1\}  \to A$ ; $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}}$ એ વ્યાપ્ત વિધેય હોય તો $A$ મેળવો .

  • [JEE MAIN 2019]
  • A

    $R\, - \,[ - 1,0)$

  • B

    $R\, - \,( - 1,0)$

  • C

    $R\, - \,\{  - 1\} $

  • D

    $[0,\infty )$

Similar Questions

વિધેય $f(x) = \;[x]\; - x$ નો વિસ્તાર મેળવો.

જો $x$ એ શૂન્યતર સંમેય સંખ્યા છે અને $y$ એ અસંમેય સંખ્યા છે , તો $xy$ મેળવો.

અહી $f: R \rightarrow R$ એ સતત વિધેય છે કે જેથી દરેક $x \in R$ માટે $f\left(x^2\right)=f\left(x^3\right)$ થાય. તો આપેલ વિધાન જુઓ.

$I.$ $f$ એ અયુગ્મ વિધેય છે.

$II.$ $f$ એ યુગ્મ વિધેય છે.

$III$. $f$ એ દરેક બિંદુ આગળ વિકલનીય છે તો  . .. .

  • [KVPY 2019]

જો દરેક $x,\;y \in R$ માટે $f:R \to R$ ;$f(x + y) = f(x) + f(y)$ નું પાલન કરે છે અને $f(1) = 7$ તો $\sum\limits_{r = 1}^n {f(r)}   =$

  • [AIEEE 2003]

જો $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ હોય તો